## Water Treatment Overview

**Grant Johnson** 

South Coast REC

Title: Urban Agriculture **Technology Advisor** 

Gejohnson@ucanr.edu







## **Many Options**

Sodium hypochlorite

Nanobubbles

Chlorine dioxide

Ozone

Quaternary Ammonium

Cold plasma

Drum Filter

Sand Filtration

Reverse Osmosis

Paper filter

Chlorine gas

Acid injection

### Match solutions to problems



- Chemical problems manipulate chemistry
  - Acidification, oxidation, reverse osmosis





- Biological problems IPM, sanitizing agent
  - Chlorine, chlorine dioxide, copper ionization, hydrogen peroxide, ozone,..





Particle problems – oxidation, flocculation, settling, filtration



## Pathogen control, provide adequate dose

| Technology                                 | Efficacy tests for Phytophthora zoospores              | Contact Time  |
|--------------------------------------------|--------------------------------------------------------|---------------|
| Filtration                                 | 0.1 – 0.5 microns (membrane)                           | Point         |
| Chlorine                                   | 2 ppm at pH 6.0 -7.0                                   | < 2 min       |
| Chlorine dioxide                           | 2.6 ppm                                                | 2 min         |
| Copper                                     | 0.8 to 5.8 ppm depending on formulation                | 10 min to 2h  |
| H <sub>2</sub> O <sub>2</sub> / peroxygens | 185 ppm $H_2O_2$ + 120 ppm PAA (1:1,000 SaniDate 12.0) | 1 min         |
| Ozone                                      | 1.5 ppm                                                | 8 min         |
| Slow Sand<br>Filtration                    | Antagonistic microbes + filtration                     | Hours to days |
| UV Light                                   | 75% transmittance of 254 nm                            | Point         |

#### **Chemical Water Quality Treatment Systems**

|                              |                                                                             |                           |                  | Ti        | reatment R | ange     |           |          |                  |                     |                           |           | Co          | osts                 |
|------------------------------|-----------------------------------------------------------------------------|---------------------------|------------------|-----------|------------|----------|-----------|----------|------------------|---------------------|---------------------------|-----------|-------------|----------------------|
| Technology                   | Notes                                                                       | Pre Treatment<br>Required | Solids / organic |           | N          | utrients | Agri -    | Controls | Reaction<br>Time | Residual<br>Effect* | Reject<br>Water<br>Waste? | Footprint |             |                      |
|                              |                                                                             |                           | material         | Pathogens | N          | Р        | chemicals | Biofilm  |                  |                     | wasier                    |           | Capital     | Operating            |
| Chlorine                     | Caution with chloramine<br>formation when using in<br>fertigation solutions | Pre-filtration            | <b>√</b>         | <b>~</b>  |            |          | Some      | <b>✓</b> | Minutes          | ++                  |                           | Small     | \$ - \$\$   | \$                   |
| Chlorine Dioxide             |                                                                             | Pre-filtration            | ✓                | <b>✓</b>  |            |          | Some      | <b>✓</b> | Minutes          | ++                  |                           | Small     | \$ - \$\$\$ | \$\$ -<br>\$\$\$     |
| Peroxyacetic acid            | (PAA) is a combination of<br>acetic acid and hydrogen<br>peroxide           | Pre-filtration            | <b>√</b>         | <b>✓</b>  |            |          | Some      | <b>✓</b> | Minutes          | ++                  |                           | Small     | \$          | \$\$ -<br>\$\$\$     |
| ECA                          | Chlorine 2-10 ppm may<br>damage lettuce                                     | Softening                 | ✓                | <b>✓</b>  |            |          |           | <b>✓</b> | Minutes          | +                   |                           | Small     |             |                      |
| Ozone                        |                                                                             | Pre-filtration            | ✓                | <b>✓</b>  |            |          | Some      | <b>✓</b> | Minutes          | +                   |                           | Medium    | \$\$\$      | \$                   |
| Copper Ionization            |                                                                             | Pre-filtration            |                  | <b>✓</b>  |            |          |           |          | Hours            | +                   |                           | Small     | \$\$\$      | \$                   |
| Peroxyacetic acid +<br>UV    | Synergistic Effect                                                          | Pre-filtration            | ✓                | <b>√</b>  |            |          | Some      | <b>✓</b> | Minutes          | ++                  |                           | Medium    | \$\$\$\$    | \$\$\$ -<br>\$\$\$\$ |
| Peroxyacetic acid +<br>Ozone | Synergistic Effect                                                          | Pre-filtration            | <b>√</b>         | <b>✓</b>  |            |          | Some      | <b>✓</b> | MInutes          | ++                  |                           | Medium    | \$\$\$\$    | \$\$\$ -<br>\$\$\$\$ |
|                              |                                                                             |                           |                  |           |            |          |           |          |                  |                     |                           |           |             |                      |

Some

Minutes

Minutes

Medium

Medium

+++

\$\$\$\$\$

\$\$\$\$\$

\$\$

\$\$\$

Ozone + UV

Deionization

Synergistic Effect

Higher purity than typically

needed

Pre-filtration

Pre-filtration

and Reverse

Osmosis to reduce cost

#### **Chemical Water Quality Treatment Systems**

|                   |                                                                             |                           | Treatment Range  |           |   |          |           |  |  |  |
|-------------------|-----------------------------------------------------------------------------|---------------------------|------------------|-----------|---|----------|-----------|--|--|--|
| Technology        | Notes                                                                       | Pre Treatment<br>Required | Solids / organic | B .1      | N | utrients | Agri -    |  |  |  |
|                   |                                                                             |                           | material         | Pathogens | N | P        | chemicals |  |  |  |
| Chlorine          | Caution with chloramine<br>formation when using in<br>fertigation solutions | Pre-filtration            | ✓                | <b>√</b>  |   |          | Some      |  |  |  |
| Chlorine Dioxide  |                                                                             | Pre-filtration            | ✓                | ✓         |   |          | Some      |  |  |  |
| Peroxyacetic acid | (PAA) is a combination of acetic acid and hydrogen peroxide                 | Pre-filtration            | <b>√</b>         | <b>√</b>  |   |          | Some      |  |  |  |
| ECA               | Chlorine 2-10 ppm may<br>damage lettuce                                     | Softening                 | <b>√</b>         | <b>√</b>  |   |          |           |  |  |  |
| Ozone             |                                                                             | Pre-filtration            | ✓                | <b>√</b>  |   |          | Some      |  |  |  |
|                   |                                                                             |                           |                  |           |   |          |           |  |  |  |

#### **Chemical Water Quality Treatment Systems**

|      | Pathogens N P Chemicals  Some  Some  Some |           |   |        |               |         |                     |                           |           | Costs       |                  |
|------|-------------------------------------------|-----------|---|--------|---------------|---------|---------------------|---------------------------|-----------|-------------|------------------|
| ınic | n .d                                      | Nutrients |   | Agri - | ri - Controls |         | Residual<br>Effect* | Reject<br>Water<br>Waste? | Footprint |             |                  |
|      | Pathogens                                 | N         | P |        | Biofilm       |         |                     | reasio.                   |           | Capital     | Operating        |
|      | <b>√</b>                                  |           |   | Some   | √             | Minutes | ++                  |                           | Small     | \$ - \$\$   | \$               |
|      | <b>✓</b>                                  |           |   | Some   | ✓             | Minutes | ++                  |                           | Small     | \$ - \$\$\$ | \$\$ -<br>\$\$\$ |
|      | <b>✓</b>                                  |           |   | Some   | <b>√</b>      | Minutes | ++                  |                           | Small     | \$          | \$\$ -<br>\$\$\$ |
|      | <b>V</b>                                  |           |   |        | √             | Minutes | +                   |                           | Small     |             |                  |
|      | <b>✓</b>                                  |           |   | Some   | ✓             | Minutes | +                   |                           | Medium    | \$\$\$      | \$               |
|      |                                           |           |   |        |               |         |                     |                           |           |             |                  |



## Best Practices Guide Water Circularity

for Controlled Environment Agriculture (CEA) Operations



**Back Pocket Grower** 

**Training** 

Search

Español

Training and crop management tools for nursery and greenhouse growers on the go.







TRAINING



home

water problems -

training

tools

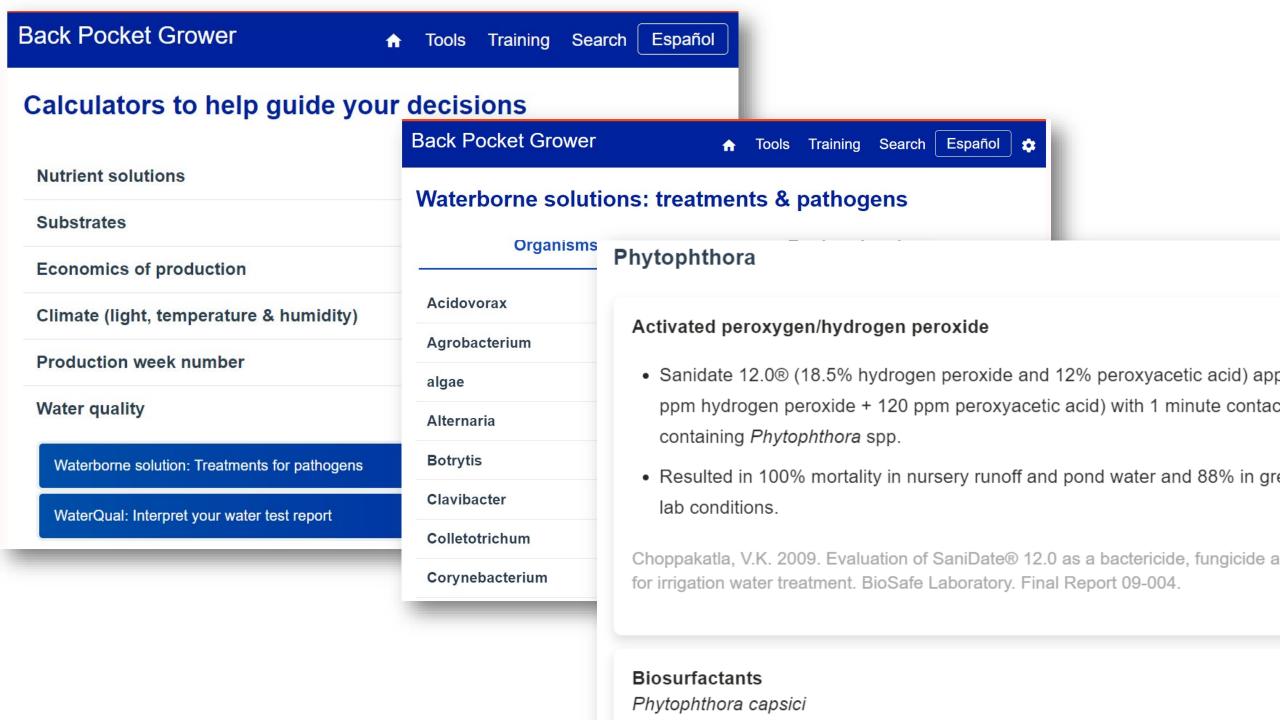
research

ask an expert

newsletter

about

search


#### Grower tools

Our grower tools help you make informed management decisions on water quality issues.

- The WaterQual tool interprets water quality tests for sources used in irrigation in greenhouses and nurseries. (Video guide)
- The Waterborne solutions tool summarizes published research on control of plant pathogens and algae.
- The Reservoir Calculator Tool can help you determine how much water is in your reservoir for current needs or future planning (video guide)
- Use the Irrigation Volume Tool to determine how much water you are applying at each irrigation cycle for part or all of your operation (video guide)
- The Pond Refill/Runoff Volume Tool will help you determine



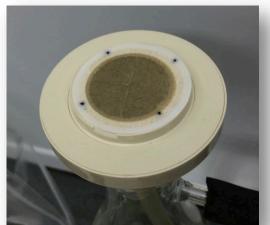

|                          |                                  | Cost \$/1,000 gal |            |        |        |  |  |  |  |
|--------------------------|----------------------------------|-------------------|------------|--------|--------|--|--|--|--|
| Filter type              | Material                         | Capital           | Consumable | Labor  | Total  |  |  |  |  |
| Metal screens            | Pressurized inline screen        | \$0.02            | \$0.00     | \$0.00 | \$0.02 |  |  |  |  |
|                          | Coarse static screen filter      | \$0.05            | \$0.00     | \$0.01 | \$0.06 |  |  |  |  |
|                          | Vibrating screen filter          | \$0.12            | \$0.04     | \$0.01 | \$0.17 |  |  |  |  |
|                          | Drum screen filter               | \$0.05            | \$0.01     | \$0.01 | \$0.07 |  |  |  |  |
| Fiber media<br>("paper") | Polyester (90%),<br>cotton (10%) | \$2.09            | \$0.78     | \$0.10 | \$2.97 |  |  |  |  |
|                          | Nylon                            | \$0.15            | \$0.16     | \$0.02 | \$0.33 |  |  |  |  |
|                          | Polyester                        | \$0.04            | \$0.13     | \$0.02 | \$0.19 |  |  |  |  |
|                          | Polyester                        | \$0.04            | \$0.02     | \$0.02 | \$0.08 |  |  |  |  |
| Sand-glass               | Sand-glass media                 | \$0.10            | \$0.00     | \$0.00 | \$0.11 |  |  |  |  |
| Membrane                 | Reverse osmosis                  | \$1.22            | \$0.04     | \$0.49 | \$1.75 |  |  |  |  |

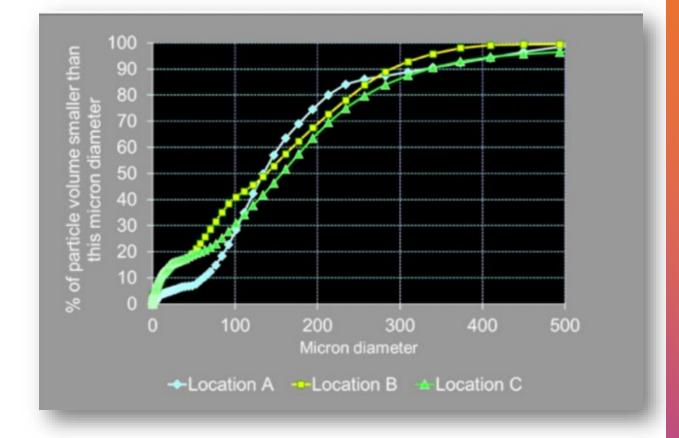


## Test if your treatment is working








# Test if your treatment is working

- For most irrigation needs: Less than 5 mg/L total suspended solids (TSS) <5 NTU turbidity
- Filter to a finer pore size than your smallest emitter









- 1. Evaluate current strategy
- 2. Reference resources
  - 1.Resource Innovation Institute .org
  - 2.Clean Water 3 .org
  - 3. Back Pocket Grower .org
- 3. Test treatment is working